Catálogo de Publicaciones
Catálogo Colectivo de Publicaciones del Centro de Documentación Isabel González (CAE), el Centro de información Eduardo Savino (CAC) y del Servicio de Documentación e Información Legal (SEDE)
Vista normal Vista MARC Vista ISBD

Caracterización y modelado de celdas solares de capa delgada basadas en semiconductores orgánicos.

Por: Koffman Frischknecht, Alejandro.
Colaborador(es): Comisión Nacional de Energía Atómica. Instituto de Tecnología Sabato | Universidad Nacional de San Martín.
Tipo de material: materialTypeLabelArchivo de ordenadorEditor: Buenos Aires : Instituto Sabato, 2018Descripción: 165 p.Otro título: Characterization and modeling of thin layer solar cells based on organic semiconductors [Parte del título].Nota de disertación: Tesis para optar al título de Doctor en Ciencia y Tecnología, Mención Física, 2018. Director: Dr. Kurt Rodolfo TARETTO. UNComa, CONICET - Argentina. Codirector: Dra. María Dolores PÉREZ. CNEA, UNSAM, CONICET - Argentina. Lugar de realización: Departamento de Electrotecnia - UNComa - Argentina. Gerencia Investigación y Aplicaciones - Centro Atómico Constituyentes - CNEA - Argentina. Fecha Defensa: 15/03/2018. Jurado: Dr. Roberto ARCE. UNL, CONICET - Argentina Dra. Mariana BERRUET. INTEMA, UNMdP, CONICET - Argentina. Dra. Mónica MARTÍNEZ BOGADO. CNEA, UNSAM, CONICET - Argentina. Resumen: Los semiconductores orgánicos (SOs) permiten la fabricación de celdas solares de bajo costo con grandes ventajas asociadas a su facilidad de síntesis. La necesidad del surgimiento de nuevas industrias de módulos fotovoltaicos para poder complementar la producción en base a silicio, da lugar a la utilización de materiales novedosos como los SOs. Para lograr celdas basadas en SOs que compitan con las tradicionales se debe lograr optimizar la fabricación de las mismas, que solo será posible a partir de la caracterización y del modelado. En este trabajo se abordó la fabricación y caracterización de dos tipos de celdas basadas en SOs implementando técnicas de fabricación novedosas: las celdas híbridas orgánicas-inorgánicas de heterojuntura distribuida (BHJh) y las celdas basadas en perovskita metal‑orgánica (PrC). Para aplicar el modelado se decidió trabajar con un sistema muy conocido, las celda de heterojuntura plana (PHJ), que involucra los mecanismos físicos de los SOs. En los SOs la absorción de luz produce la generación de portadores de carga, electrones y huecos, vinculados electrostáticamente en un estado excitado denominado excitón. Para poder convertir estos portadores en corriente eléctrica es necesario disociar el excitón, lo que se puede lograr a través de una juntura entre dos SOs, generando un salto energético entre los niveles de energía a ambos lados de la juntura. Las celdas más sencillas con este principio de funcionamiento son las de heterojuntura plana (PHJ), que consisten en dos SOs preparados en capas una encima de la otra. A partir de datos de curvas tensión‑corriente de celdas PHJ preparadas en un trabajo previo, se aplicó un modelo analítico con la menor cantidad de parámetros posibles, que incorpora la dependencia de la disociación de excitones con el campo eléctrico. El resultado de los ajustes de curvas de tensión‑corriente variando la intensidad de la luz incidente mostró una baja dependencia de la fotocorriente con el campo eléctrico, lo que a su vez indica una alta probabilidad de disociación de excitones en el grupo de celdas estudiadas. Al mismo tiempo las curvas presentaron un aumento de la pendiente para tensiones menores a 0 V, al aumentar la intensidad de la luz incidente. Los ajustes con el modelo demostraron que esta variación se puede explicar solo con un cambio en la resistencia paralelo, a partir de la presencia de shunts producidos por materiales fotoconductivos. Otra alternativa para separar los excitones es generando una heterojuntura distribuida, a partir de infiltrar un material inorgánico nanoestructurado de canales de diámetro menor a 50 nm, con un SO. En los SOs los excitones solo pueden recorrer una distancia limitada, del orden de 20 nm, antes de decaer al estado fundamental. Utilizando una geometría de juntura distribuida, estas celdas permiten generar y recolectar portadores fotogenerados en un espesor efectivo de la capa orgánica:inorgánica de más de 100 nm, permitiendo aumentar la absorción de luz y la fotocorriente. En este trabajo se prepararon celdas híbridas basadas en TiO2 nanoporoso por sol‑gel y el polímero P3HT. Se logró comprobar la infiltración del polímero dentro de los poros y la generación de una capa de polímero externa a la nanoestructura, la cual permite el transporte de los huecos hacia el contacto eléctrico. También se observó la dependencia de la respuesta de las celdas con los parámetros de síntesis de TiO2, hallando una celda funcional de eficiencia máxima de 0.12 % al utilizar un conjunto de una capa densa y otra porosa de TiO2. Durante los ensayos se halló que estas celdas presentan una respuesta selectiva de la fotocorriente a la composición espectral de la luz. Al irradiar previamente con luz UV, aumenta el valor de corriente que genera la celda al iluminar con otras longitudes de onda, mientras que al irradiar con luz visible los valores de corriente disminuyen. Ambos efectos logran una saturación en la fotocorriente después de algún tiempo de irradiación con una única longitud de onda, siendo más rápido el efecto frente a luz UV. Estos efectos presentaron mecanismos de reversibilidad al eliminar la exposición, y mostraron una cancelación entre ellos al exponer la celda a luz blanca de espectro AM 1.5. Se propone que ambos efectos están relacionados con la presencia de defectos electrónicos en capa de TiO2, producto de vacancias de oxígeno...
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título.
Tipo de ítem Biblioteca de origen Signatura Estado Fecha de vencimiento Código de barras
Tesis Tesis Centro de Información Eduardo Savino

Centro Atómico Constituyentes

IS/TD-113/18 (Navegar estantería) No para préstamo IS/TD-113/18

Tesis para optar al título de Doctor en Ciencia y Tecnología, Mención Física, 2018.

Director:
Dr. Kurt Rodolfo TARETTO. UNComa, CONICET - Argentina.

Codirector: Dra. María Dolores PÉREZ. CNEA, UNSAM, CONICET - Argentina.

Lugar de realización: Departamento de Electrotecnia - UNComa - Argentina. Gerencia Investigación y Aplicaciones - Centro Atómico Constituyentes - CNEA - Argentina.

Fecha Defensa: 15/03/2018.

Jurado: Dr. Roberto ARCE. UNL, CONICET - Argentina
Dra. Mariana BERRUET. INTEMA, UNMdP, CONICET - Argentina.
Dra. Mónica MARTÍNEZ BOGADO. CNEA, UNSAM, CONICET - Argentina.

Los semiconductores orgánicos (SOs) permiten la fabricación de celdas solares de bajo costo con grandes ventajas asociadas a su facilidad de síntesis. La necesidad del surgimiento de nuevas industrias de módulos fotovoltaicos para poder complementar la producción en base a silicio, da lugar a la utilización de materiales novedosos como los SOs. Para lograr celdas basadas en SOs que compitan con las tradicionales se debe lograr optimizar la fabricación de las mismas, que solo será posible a partir de la caracterización y del modelado. En este trabajo se abordó la fabricación y caracterización de dos tipos de celdas basadas en SOs implementando técnicas de fabricación novedosas: las celdas híbridas orgánicas-inorgánicas de heterojuntura distribuida (BHJh) y las celdas basadas en perovskita metal‑orgánica (PrC). Para aplicar el modelado se decidió trabajar con un sistema muy conocido, las celda de heterojuntura plana (PHJ), que involucra los mecanismos físicos de los SOs.

En los SOs la absorción de luz produce la generación de portadores de carga, electrones y huecos, vinculados electrostáticamente en un estado excitado denominado excitón. Para poder convertir estos portadores en corriente eléctrica es necesario disociar el excitón, lo que se puede lograr a través de una juntura entre dos SOs, generando un salto energético entre los niveles de energía a ambos lados de la juntura. Las celdas más sencillas con este principio de funcionamiento son las de heterojuntura plana (PHJ), que consisten en dos SOs preparados en capas una encima de la otra. A partir de datos de curvas tensión‑corriente de celdas PHJ preparadas en un trabajo previo, se aplicó un modelo analítico con la menor cantidad de parámetros posibles, que incorpora la dependencia de la disociación de excitones con el campo eléctrico. El resultado de los ajustes de curvas de tensión‑corriente variando la intensidad de la luz incidente mostró una baja dependencia de la fotocorriente con el campo eléctrico, lo que a su vez indica una alta probabilidad de disociación de excitones en el grupo de celdas estudiadas. Al mismo tiempo las curvas presentaron un aumento de la pendiente para tensiones menores a 0 V, al aumentar la intensidad de la luz incidente. Los ajustes con el modelo demostraron que esta variación se puede explicar solo con un cambio en la resistencia paralelo, a partir de la presencia de shunts producidos por materiales fotoconductivos.

Otra alternativa para separar los excitones es generando una heterojuntura distribuida, a partir de infiltrar un material inorgánico nanoestructurado de canales de diámetro menor a 50 nm, con un SO. En los SOs los excitones solo pueden recorrer una distancia limitada, del orden de 20 nm, antes de decaer al estado fundamental. Utilizando una geometría de juntura distribuida, estas celdas permiten generar y recolectar portadores fotogenerados en un espesor efectivo de la capa orgánica:inorgánica de más de 100 nm, permitiendo aumentar la absorción de luz y la fotocorriente. En este trabajo se prepararon celdas híbridas basadas en TiO2 nanoporoso por sol‑gel y el polímero P3HT. Se logró comprobar la infiltración del polímero dentro de los poros y la generación de una capa de polímero externa a la nanoestructura, la cual permite el transporte de los huecos hacia el contacto eléctrico. También se observó la dependencia de la respuesta de las celdas con los parámetros de síntesis de TiO2, hallando una celda funcional de eficiencia máxima de 0.12 % al utilizar un conjunto de una capa densa y otra porosa de TiO2. Durante los ensayos se halló que estas celdas presentan una respuesta selectiva de la fotocorriente a la composición espectral de la luz. Al irradiar previamente con luz UV, aumenta el valor de corriente que genera la celda al iluminar con otras longitudes de onda, mientras que al irradiar con luz visible los valores de corriente disminuyen. Ambos efectos logran una saturación en la fotocorriente después de algún tiempo de irradiación con una única longitud de onda, siendo más rápido el efecto frente a luz UV. Estos efectos presentaron mecanismos de reversibilidad al eliminar la exposición, y mostraron una cancelación entre ellos al exponer la celda a luz blanca de espectro AM 1.5. Se propone que ambos efectos están relacionados con la presencia de defectos electrónicos en capa de TiO2, producto de vacancias de oxígeno...

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes

^

Con tecnología Koha